Math 33A Worksheet Week 6

TA: Emil Geisler and Caleb Partin

May 7, 2024

Exercise 1. Let $A : \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by the matrix $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & -2 & 6 \end{bmatrix}$. Find a basis for ker A. Find a basis for ImA. Notice that dim ker $A + \dim \operatorname{Im} A = 4$.

Exercise 2. True or false: Explain your reasoning or find an example or counterexample.

- (a) If V is a subspace of \mathbb{R}^3 that does not contain any of the elementary column vectors e_1, e_2, e_3 , then $V = \{\vec{0}\}$.
- (b) If v_1, v_2, v_3, v_4 are linearly independent vectors, then v_1, v_2, v_3 are linearly independent.
- (c) If v_1, v_2, v_3 are linearly independent vectors, then v_1, v_2, v_3, v_4 are linearly independent.

(d) It is possible for a 4 × 4 matrix A to have ker $A = \operatorname{span} \left\langle \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \right\rangle$ and $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$

$$\operatorname{Im} A = \operatorname{span} \left\langle \begin{array}{c} 1\\0\\0\\3 \end{bmatrix}, \begin{array}{c} 0\\0\\4\\2 \end{bmatrix}, \begin{array}{c} 0\\0\\4\\2 \end{bmatrix}, \begin{array}{c} 0\\2\\3\\-1 \end{bmatrix} \right\rangle$$

- (e) There exists a 4×4 matrix A with ker $A = \operatorname{span}\langle e_1, e_2, e_3 \rangle$ and $\operatorname{Im} A = \operatorname{span}\langle e_3 + e_4 \rangle$
- (f) There exists a 5×5 matrix A with ker A = ImA.
- (g) There exists a 4×4 matrix A with ker A = ImA.

Exercise 3. Let $A : \mathbb{R}^8 \to \mathbb{R}^7$ be given by the following matrix:

[0]	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	3	0	2
2	3	0	-1	0	0	4	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Determine dim ker A (hint: use rank-nullity and find dim ImA).

Exercise 4. Find a basis for the following subspaces of \mathbb{R}^3 :

(a)
$$V = \operatorname{span}\left(\begin{bmatrix}3\\-1\\2\end{bmatrix}, \begin{bmatrix}1\\0\\1\end{bmatrix}, \begin{bmatrix}2\\-1\\1\end{bmatrix}, \begin{bmatrix}0\\1\\-4\end{bmatrix}\right)$$

(b) $V = \left\{\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix} \mid v_1 - 3v_2 = 0\right\}$

(c) Let $A : \mathbb{R}^3 \to \mathbb{R}^3$ be any linear transformation such that dim ker A = 0. Find a basis for V = ImA.

Exercise 5. For what values of $\lambda \in \mathbb{R}$ are the following pairs of vectors orthogonal?

Exercise 6. Consider two subspaces V and W of \mathbb{R}^n , where V is contained in W, denoted $V \subseteq W$.

- (a) Show that $\dim(V) \leq \dim(W)$.
- (b) Show that if $\dim(V) = \dim(W)$, then V = W.